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Abstract: We characterize the kinetics of two cancer cell lines: IGROV1 (ovarian carcinoma) and MOLT4 (leukemia). 
By means of flow cytometry, we selected two populations from exponentially growing in vitro cell lines, depending on 
the cell’s DNA synthesis activity during a preceding labeling period. 

 In this paper based on generalized cumulative damage approach with a stochastic process describing initial 
damage for a material specimen, a broad class of statistical models for material strength is developed. The new 
distribution arrived can also be written as the inverse Gaussian-type distribution, which can be interpreted as the first 
passage of the accumulated damage past a damage threshold, resulting in material failure. For these populations we 
determined the time course of the cumulative damage of cells in different phases of the cycles, sampling every 9 hr for 
63 hr, and connected with an interpreted real-situations.   

Keywords: Accelerated testing, Branching process, Cumulative damage, Initial damage, DNA, Flow cytometric, 
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1. Introduction 

We observed that an initially semi-synchronous population (whose cells are in the same 

cell cycle phase) rapidly loses this feature. A variety of mathematical models have been 

proposed in the framework of cell population dynamics to describe this asynchronous growth 

[3,4,9,13] the main aim being to find under what conditions a structured population model 

satisfies this property [5]. Interest has also focused on cell cycle kinetics, i.e. the determination 

of some cellular parameters, such as DNA synthesis rates or phase transition times, related to cell 

cycle progression [12,14] 

From the biological point of view, the speed of damage is strictly connected to some cell 

cycle kinetic parameters, such as the mean cell cycle duration and its variance. Many factors can 

influence the variability of cell cycle duration. One of them is the cell type: cells from different 
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tissues and with different degrees of differentiation do not have the same cycle duration; 

moreover, malignant cells usually have a completely deregulated cell cycle clock [11]. Cell type 

not only determines the internal mechanism, but also the reaction to the environment. While the 

proliferation of normal cells is controlled by the environment, which produces factors to 

stimulate growth, or inhibitory factors to stop cell proliferation, cancer cells are often able to 

stimulate their own growth, even when external factors are lacking. The reception of products 

from the outside, such as nutrients diffusing through the cell membrane from the environment, or 

cell cycle regulating signals from adjacent cells, is highly heterogeneous even within one cell 

type. This could depend on the particular spatial organization but also on the variability in 

distribution of intracellular substances and on inter-cell competition for growth factors [1]. 

Another aspect to be considered is the unequal division of mother cells, which leads to 

differences in cell size, protein concentration (see Darzynkiewicz et al., 1982), etc., possibly in- 

fluencing the duration of the first phase of the cell cycle [15]. Some cells, comprising tumor cells 

in vivo, may also spend a variable period of time in a quiescent state, entailing a large effect on 

the coefficient of variation of cell cycle length and therefore on the speed of convergence.   

From the mathematical point of view, there are many mathematical models to explain an 

attractive approach to the quantitative analysis of cell kinetics, the performance of an engineering 

and physical system. As the model is well defined, the prediction obtained from the model 

exactly match- with an interpreted real situations. A biological system is being continuously 

influenced by various biological systems and some other factors .In the absence of exact 

information about the contributions of such factors to the biological system, developing a model 

which can predict exactly is difficult. 

A general class of statistical model based on cumulative damage is derived for the uses of 

accelerated testing situations. The approach assumes that “initial damage’’ exists in a  material 

specimen which reduces its theoretical strength and the initial damage can be modelled by a 

stochastic processes that results in the distribution of the specimen’s initial strength. The power-

law-weibull as an overall better fitting size-effect model than the ordinary weibull model.           

2. Branching Processes and Asymptotic Properties                                                                     
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We follow a deterministic approach, using a simplified linear mathematical model, i.e. 

population model in which individuals undergo no influence what soever from each other. Other 

approaches could also used, such as the open proposed in [2] and based on the branching 

processes. Branching processes is stochastic model of individuals (cells) that live for random 

time and get a random number of children. “Asynchronous” reflects the property for a system to 

forget asymptotically its initial state. As we shall see, but non zero, amount of variability in their 

cell cycle length asymptotically lose their momery of the initial age configuration. For this 

population, we make the following assumption that:  

(i) We can assume that the environmental conditions are independent of time. 

(ii) The parameters of the model do not depend on the state of the system. 

(iii) The population is in asynchronous exponential growth.       

3. Experiments 

A leukemia cell line (MOLT4), and an ovarian carcinoma cell line (IGROV1), were 

analysed in order to characterize their kinetic features. Cell counts and flow cytometric (FC) data 

were collected every 9 hr for 63 hr, as a basis for the growth curve and the cell cycle phase 

cumulative damage (we recall that the cell cycle is divided into four main phases: the G1 phase, 

followed by S, which is the phase of DNA synthesis; the G2 phase, followed by M, characterized 

by the occurrence of mitosis). Asynchronicity is reached when the cell phase percentages no 

longer change with time, within the experimental error [8]. 

3.1 Growth Curve 

MOLT4 cells growing in suspension and IGROV1 cells growing in adhesion in the 

bottom of the culture flasks were counted at each sampling time using a Coulter Counter. Cell 

counts were normalized to an initial number of 1000 cells. The experiment was performed during 

the period of exponential growth and exponential curves were fitted to the data by nonlinear least 

squares (Fig. 1).  

From the growth curve it was possible to obtain the population cumulative damage F(s), 

which is an important population kinetic parameter. If the population does not have any 

quiescent cell, this parameter is about the same as the mean cell cycle duration, otherwise it is 

bigger. The cell lines we studied contained a negligible amount of quiescent cells, which 

disappeared after an initial lag due to the cell death or recruitment into the proliferative state. 
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Fig.1.Growth curve of the ovarian carcinoma (IGROV1-blue), Growth curve of the leukemia 

(MOLT4-Red) 

 

4. Flow Cytometric Analysis  

After each count, cells were fixed in ethanol and underwent cytochemical and 

immunocytochemical treatments. Details have already been published (Ubezio et al., 1991). To 

measure DNA content, cells were stained with the fluorochrome propidium iodide (PI), which 

fluoresces red. To label cells in phase S at time zero, cells were incubated for 20 min with 

bromodeoxyuridine (BrdUrd), a thymidine analog, just before beginning data collection. As S 

phase cycling cells take up BrdUrd instead of thymidine in the newly synthesized DNA, the 

amount of BrdUrd incorporated by each cell can be related to the DNA synthesis activity of that 

cell. Before the flow cytometric analysis, cells were allowed to react with BrdUrd-specific 

monoclonal antibodies conjugated to the fluorochrome -fluorescein isothiocynate (FITC), which 

fluoresces green. From analysis of the first sample, related to the initial population (at time 0), 

cells in S phase could be distinguished, as they were positive for BrdUrd. Signals from at least 

10,000 cells for each sample were collected and memorized by the FC computer. This large 

sample assures the representativeness of the cell population measured with respect to the whole 

population under study. 

Cells which do not take up BrdUrd emit low-level green fluorescence, due to other 

fluorescent compounds which are naturally present in the cells and to some green fluorescence of 
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PI. This makes it possible to visualize BrdUrd-negative cells as well. The movement of the initial 

population could be followed throughout the cycle, because BrdUrd-positive cells, i.e. cells in S 

phase at time 0, maintain this label and pass it on to their descendants. This kind of labeling 

allowed us to analyse two different (and complementary) subpopulations for each cell line. The 

computer program previously developed for the DNA histogram analysis gave the cell phase 

percentages for the total population, as well as for BrdUrd-positive and BrdUrd-negative cells. 

Since the experiments were performed when the cell lines were in asynchronous exponential 

growth, the DNA histograms of the total population had more or less the same shape at each 

sampling time, and so did the cell phase percentages [8]. In the labeled as well as in the 

unlabeled groups the initial populations were to a certain extent synchronized. 

 

Notation  

𝑐(. )   damage accumulation function 

𝑚(. )    damage model function 

𝐷   amount of damage; 𝐷 > 0 

𝐷𝑛   damage to the specimen after 𝑛 increments  

𝐹𝑠(. )  Cdf of S 

𝐺𝑊(. )  Cdf of  W 

𝑀𝑠(. )  strength reduction model function 

𝐿   gauge length 

𝑁   number of increments until failure 

𝑛   a value of  𝑁:𝑛 = 0,1,2 …. 

𝑆   tensile strength; 𝑆 > 0 

𝑠   a value of 𝑆 

𝑊   initial strength of material specimen 

𝑋0  initial damage of material specimen 

𝑋𝑛  cumulative damage after 𝑛 increments  

𝑌𝑛  cumulative initial damage at location 𝑢 

Ω𝑤  support of 𝑊  

5. Mathematical model 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016                                                                 560 
ISSN 2229-5518  

IJSER © 2016 
http://www.ijser.org  

Consider the following generalized cumulative damage model  

𝑋𝑛+1 = (𝑋𝑛) + 𝐷𝑛𝑚(𝑋𝑛) 

where 𝑐(. )  is the nonnegative function. Because 𝐷𝑛 = [𝑐(𝑋𝑛+1) − 𝑐(𝑋𝑛)] / m(𝑋𝑛), the 

damage incurred to the specimen after 𝑛 increments of strain is   

∑ 𝐷𝑖 =𝑛−1
𝑖=0 ∑ 𝑐(𝑋𝑖+1)−𝑐(𝑋𝑖)

𝑚(𝑋𝑖)
𝑛−1
𝑖=0                    

                                                 ≅ ∫ 𝑐 ′(𝑥)
𝑚(𝑥)

𝑑𝑥 = 𝑀𝑐(𝑋𝑛)−𝑋𝑛
𝑋0

𝑀𝑐(𝑋0)                   (1) 

 for large 𝑛. Here 𝑀𝑐(𝑥) = ∫ 𝑐 ′(𝑥)
𝑚(𝑥)

𝑑𝑥. Then by the central limit theorem, 𝑀𝑐(𝑋𝑛)−𝑀𝑐(𝑋0) has 

an approximate s-normal distribution with mean 𝑛𝜇 , and standard deviation √𝑛𝜎: that is  

𝑃[𝑀𝑐(𝑋𝑛)−𝑀𝑐(𝑋0) ≤ 𝑢] ≅ Φ �𝑢−𝑛𝜇
√𝑛𝜎

� where Φ(. ), denotes the standard s-normal cdf. 

The following cumulative damage models are equivalent: 

        𝑋𝑛+1 = 𝑋𝑛 + 𝐷𝑛𝑋𝑛 

                                           𝑙𝑜𝑔𝑋𝑛+1 = 𝑙𝑜𝑔𝑋𝑛 + 𝐷𝑛                            (2) 

This shows that the additive damage model of the logarithm of cumulative damage is equivalent 

to the multiplicative damage model of the cumulative damage. 

Let N be the number of increments of tensile strength is applied to a specimen of strength 

ψ until failure. Because �𝑀𝑐(𝜓)−𝑀𝑐(𝑋0)� > 0almost surely, 

We have,  

  N=𝑠𝑢𝑝{𝑛:𝑋1 ≤ ψ, … … … .𝑋𝑛−1 ≤ ψ}       
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   = 𝑠𝑢𝑝{𝑛:𝑀𝑐(𝑋1) −𝑀𝑐(𝑋0) ≤ 𝑀𝑐(𝜓)−𝑀𝑐(𝑋0), … … .𝑀𝑐(𝑋𝑛−1) −𝑀𝑐(𝑋0) ≤ 𝑀𝑐(𝜓)−

𝑀𝑐(𝑋0)}                                                                                                            (3)        

  N=1, if the set is empty. 

The survival probability after 𝑛 increments of strain is given by 

P(N > 𝑛) = ∫𝐹𝑛(𝑤)𝑑𝐺𝑊(𝑤),                                          (4) 

where 𝐹𝑛(𝑤) = 𝑃[𝑀𝑐(𝑋𝑛)−𝑀𝑐(𝑋0) ≤ 𝑀𝑐(𝑤)] and 𝐺𝑤(. ) is the Cdf of 

𝑊 = 𝑀𝑐
−1�𝑀𝑐(𝜓)−𝑀𝑐(𝑋0)�. 

Let 𝑌𝑢denote the cumulative initial damage at location 𝑢 (0 ≤ 𝑢 ≤ 𝐿) along the length of 

the specimens. Let 𝐻𝐿 = 𝑚𝑎𝑥{𝑌𝑢 ∶ (0 ≤ 𝑢 ≤ 𝐿) } denote the initial damage in terms of the 

severity of the inherent flaws over the specimens. That is, 𝐻𝐿  is the random strength reduction of 

the specimens due to the most severe inherent flaw present before load is applied to the specimen 

of the gauge length L. Thus the initial strength becomes  

𝑊 = 𝑀𝑐
−1�𝑀𝑐(𝜓)−𝑀𝑐(𝐻𝐿)�.                                                         (5)  

The cdf of  𝑊 = 𝑀𝑐
−1�𝑀𝑐(𝜓) −𝑀𝑐(𝐻𝐿)� is given by           

𝐺𝑊(𝑤) = 𝑃�𝑀𝑐
−1�𝑀𝑐(𝜓)−𝑀𝑐(𝐻𝐿)� ≤ 𝑤|𝑤𝜖Ω𝑤� 

=
1 − 𝐹𝐻𝐿 �𝑀𝑐

−1�𝑀𝑐(𝜓)−𝑀𝑐(𝑤)��
𝐹𝐻𝐿(ψ) − 𝐹𝐻𝐿(0)  

            where Ω𝑤 = {𝑤: 𝑤 = 𝑀𝑐
−1�𝑀𝑐(𝜓)−𝑀𝑐(ℎ)�, 0 < ℎ < 𝜓 

Finally, letting 𝑆 be continuous version of 𝑁, and using the symmetry of Φ(. ), as gives the 

failure distribution of  the specimen as  

                     𝐹𝑆(𝑠) = 𝑃(𝑆 ≤ 𝑠) ≅ Φ ��sμ
σ
− Λ(θ;L)

√sσ
�.                                       (6)                          
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Reparameterizing  the above cdf as μL = Λ(θ; L) ∕µ  and λL = (Λ(θ; L) ∕ σ  )2 

,we have  𝐹𝑆(𝑠) = 𝑃(𝑆 ≤ 𝑠) ≅ Φ ��λL
s
� s

μL
− 1�� R                                              (7) 

Note that (7) is a Birnbaum-Saunders [7] type distribution that incorporates the gauge length L. 

The difference between the inverse Gaussian and Birnbaum-Saunders distribution negligible 

when �λL ≫ μL [6]. So Birnbaum -Saunders models can be approximated by the first term of an 

inverse Gaussian Cdf when   �λL ∕ μL ≫ 1. The pdf for (7) is approximated by inverse Gaussian 

pdf with mean parameter λL and scale parameter μL is given by,  

                        𝑓𝑆(𝑠) = � λL
2𝜋𝑠3

 𝑒𝑥𝑝 �− λL�s−μL�
2

2𝜇2𝐿𝑠
�   R               (8)  

Where μL = Λ(θ; L) μ⁄  and λL = (Λ(θ; L) ∕ σ  )2 .Note that �λL/μ
L

= 𝜇
𝜎�  is independent of  

θ & 𝐿. By selecting various form of the functions c(.) and h(.)  Several new models can be 

obtained. We can obtain damage models with different stochastic processes describing initial 

damage as appropriate for the physical assumptions. 

We have the following three models 

𝑀𝐴 = λL�θ1 − θ2√L −  θ3L�
2
 

𝑀𝐵 = λL(θ1 − θ2L − θ3L2)2 

𝑀𝑐 = λL�θ1 − eθ2L−θ3�2 

Where μL = �λL/ξ for all three. The model MA includes the “Gauss-Gauss additive model’’, as 

a special case when θ3 = 0, and the “Gauss-Gauss multiplicative model”, as a special case with 

the constraint 

 𝜃1 = �
�𝑙𝑜𝑔�𝜃2𝜃3

�−𝑙𝑜𝑔√8𝜋�𝜃2
2

4𝜃3
� R. 
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Also note the model MB includes the Gauss-gamma additive model as a special case when θ3 = 

0. 

The power-law-Weibull model as an overall better fitting size-effect model than the ordinary 

Weibull model [10]. The power-law Weibull Cdf is given by  

𝐹𝑆(𝑠) = [1− exp[−Lθ �s
β
�

α
],  s>0 .                                                                       (9) 

6. Application  

 We can use the characteristic cell kinetic population gives an approximation of 
cumulative damage. Using the experimental data, we can obtain the cumulative distribution 
function. Show that the cell population of IGORV1 and MOLT4 cells grows exponentially, 
followed by flow cytometric analysis and additional cell count, providing an independent way to 
estimate the population of cell damage.  Either BrdUrd- labeled or unlabeled cells exactly match 
with this distribution function associated with one of the cell cycle phases.  We will focus here 
on the damage is of S phase cells within the population of BrdUrd labeled cells. Different 
BrdUrd concentrations  times may be used depending on the cell type and aim of the experiment 
(pulse, pulse followed cumulative BrdUrd labeling over long periods of time). Some cell types or 
lines may be overly sensitive to BrdUrd, and their cell cycle may be perturbed at higher 
concentrations  and longer exposure times. DNA susceptibility to denaturation varies depending 
on cell type, pilot studies should be done to find optimal conditions for a particular cell type by 
testing different temperatures of DNA denaturation (80–100°C). The denaturation results in cell 
damage and may lead to a significant cell loss. A glance that Fig.2 shows a tendency that 
breaking strengths decrease as gauge length increase by an accelerated test.   
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Fig.2 : 𝑙𝑜𝑔[−𝑙𝑜𝑔(1− 𝐹𝑆(𝑠))] changes due to BrdUrd-DNA   by using power law weibull 

probability plots IGROV1 &MOLT4(Blue & Red colours) 

7. Conclusions 

 An analytical approach was described for estimating some cell kinetic parameters in the 

case where inter-cell variability in cell cycle duration. We aimed at assessing the damage of 

desynchronization of a cell population and reached this goal by using a mathematical model and 

by considering the damage cell cycle duration of the main significant parameters. Consider the 

cell kinetics of the two lines. The leukemia cell line has a longer cell cycle, but less inter-cell 

variability than the ovarian carcinoma cell line, even though the ovarian carcinoma cell cycle is 

about 9 hr shorter. Even if the cells are all of the same kind and grow in homogeneous 

conditions, each cell is an individual, with its own particular features; the cell cycle, for example, 

does not last exactly the same for every cell. A cumulative damage model   represents the power-

law-weibull cumulative distribution function is characterized by the failure FS(s).  By using FS(s) 

along with the time intervals the plotted data scattered and the curve defined a failure as initial 

damage by a power-law- weibull distribution. The model is developed to find the levels of an 

experimental data and the results have been obtained. 
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